29 research outputs found

    Nonholonomic Motion Planning Strategy for Underactuated Manipulator

    Get PDF
    This paper develops nonholonomic motion planning strategy for three-joint underactuated manipulator, which uses only two actuators and can be converted into chained form. Since the manipulator was designed focusing on the control simplicity, there are several issues for motion planning, mainly including transformation singularity, path estimation, and trajectory robustness in the presence of initial errors, which need to be considered. Although many existing motion planning control laws for chained form system can be directly applied to the manipulator and steer it to desired configuration, coordinate transformation singularities often happen. We propose two mathematical techniques to avoid the transformation singularities. Then, two evaluation indicators are defined and used to estimate control precision and linear approximation capability. In the end, the initial error sensitivity matrix is introduced to describe the interference sensitivity, which is called robustness. The simulation and experimental results show that an efficient and robust resultant path of three-joint underactuated manipulator can be successfully obtained by use of the motion planning strategy we presented

    Revealing unusual bandgap shifts with temperature and bandgap renormalization effect in phase-stabilized metal halide perovskites

    Full text link
    Hybrid organic-inorganic metal halide perovskites are emerging materials in photovoltaics, whose bandgap is one of the most crucial parameters governing their light harvesting performance. Here we present temperature and photocarrier density dependence of the bandgap in two phase-stabilized perovskite thin films (MA0.3FA0.7PbI3 and MA0.3FA0.7Pb0.5Sn0.5I3) using photoluminescence and absorption spectroscopy. Contrasting bandgap shifts with temperature are observed between the two perovskites. By utilizing X-ray diffraction and in situ high pressure photoluminescence spectroscopy, we show that the thermal expansion plays only a minor role on the large bandgap blueshift due to the enhanced structural stability in our samples. Our first-principles calculations further demonstrate the significant impact of thermally induced lattice distortions on the bandgap widening and reveal that the anomalous trends are caused by the competition between the static and dynamic distortions. Additionally, both the bandgap renormalization and band filling effects are directly observed for the first time in fluence-dependent photoluminescence measurements and are employed to estimate the exciton effective mass. Our results provide new insights into the basic understanding of thermal and charge-accumulation effects on the band structure of hybrid perovskites

    Trotting Motion of the Quadruped Model with Two Spinal Joints and Its Dynamics Features

    No full text
    The spine plays important roles in the quadruped locomotion. To investigate the effects of the spine on the quadruped trotting motion, firstly, a sagittal passive model is proposed which contains four massless springy legs and two passive spinal joints. To generate the trotting gait of the model, the multibody hybrid dynamics model is established based on the defined events. The combination of optimization tools is used to find the suitable solution space in which the model can maintain a periodic motion. It reveals that the quadruped trotting motion results from the coordinated features of the spine and the legs. By comparing the model with the rigid body, it is proven that the spinal joints can reduce the effect of the ground reaction forces on the body in a special velocity range. Then, a hybrid controller whose objective is to maintain the kinematic coordination between the spinal joints is applied and it replaces the passive spinal joints, and the results prove that it can make the model achieve a stable periodic motion. Finally, the prototype of the quadruped robot with two spinal joints based on the model is established and its trotting motion is achieved successfully. The experiment results also indicate the compliant effect of the spine on the motion performance. Consequently, the effects of the spine at trotting gait are helpful to guide the development of the quadruped robots

    Comparison Study of the PSO and SBPSO on Universal Robot Trajectory Planning

    No full text
    Industrial robots were modified over the years. The benefit of robots is making production systems more efficient. Most methods of controlling robots have some limitations, such as stopping the robots. The robot stops by various reasons, such as collisions. The goal of this study is to study the comparison of improving the Artificial Potential Field (APF) by the traditional Particle Swarm Optimization (PSO) algorithm and the Serendipity-Based PSO (SBPSO) algorithm to control the path of a universal robot UR5 with collision avoidance. Already, the metaheuristic algorithm kinds deal with a premature convergence. This paper presents a new approach, which depends on the concept of serendipity and premature convergence applied to the path of the universal manipulator UR5 and also compares it with traditional the PSO. The features of the SBPSO algorithm prototype are formalized in this paper using the concept of serendipity in two dimensions: intelligence and chance. The results showed that the SBPSO is more efficient and has better convergence behavior than the traditional PSO for controlling the trajectory planning of the UR5 manipulator with obstacle avoidance

    Paralleled Structure-Based String-Type Fiber Bragg Grating Acceleration Sensor

    No full text

    Shearing algorithm and device for the continuous carbon fiber 3D printing

    No full text

    Measurement of Temperature Field for the Spindle of Machine Tool Based on Optical Fiber Bragg Grating Sensors

    No full text
    The change of spindle temperature field is an important factor which influences machining precision. Many methods of spindle temperature field measurement have been proposed. However, most of the methods are based on the electric temperature sensors. There exist some defects (e.g., anti-interference, multiplexing, and stability capacity are poor). To increase the temperature sensitivity and reduce strain sensitivity of the bare Fiber Bragg Grating (FBG) sensor, a cassette packaged FBG sensor is proposed to measure spindle temperature field. The temperature characteristics of the packaged FBG sensor are studied by comparative experiment with traditional thermal resistor sensor. The experimental results show that the packaged FBG sensor has the same capacity of temperature measurement with the thermal resistor sensor but with more remarkable antiinterference. In the further measurement experiment of the temperature field, a spindle nonuniform temperature field is acquired by the calibrated FBG sensors. It indicates that the packaged FBG sensor can be used to measure the temperature field for the spindle of machine tool

    Research on Deformation Reconstruction Algorithm of Thin Plate Based on Distributed Strain

    No full text
    corecore